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Abstract. The Larsen perturbation method is adopted to study the influence of magnetic fields on polarons
in realistic heterojunctions in a quasi-two-dimension approximation. The interaction between an electron
and both the bulk longitudinal optical phonons and the two branches of interface optical phonons is taken
into account to show the influence of magnetic fields at different ranges on the polaron cyclotron mass due
to the coupling of the electron with each branch of phonon modes. The result indicates that not only do
the bulk phonons influence the polaron cyclotron mass, but the interface phonons do as well. The pressure
effect on the cyclotron mass is also discussed.

PACS. 71.38.Fp Large or Frohlich polarons – 73.20.-r Electron states at surfaces and interfaces – 73.40.Kp
III-V semiconductor-to-semiconductor contacts – 62.50.+p High-pressure and shock wave effects in solids
and liquids (for high pressure apparatus and techniques)

1 Introduction

Since the sixties of last century, some authors have studied
the surface phonon modes [1,2] and surface polarons [3,4]
to indicate that the properties of phonon modes and
polarons in a quasi-2D system are obviously different
from that in three-dimension bulk materials. The fast
development of man-made layered semiconductors gave
a strong impetus in study of the properties of polarons
in heterostructures, such as heterojunctions and quan-
tum wells (QWs), both theoretically and experimentally.
Some authors [5–7] adopted an approximation about the
interaction between an electron and 2D bulk longitudi-
nal optical (LO) phonons to simplify the complicated
electron-phonon interaction. But these works over exag-
gerated the influences of bulk LO phonons due to the
dimensional effect of polarons. Some authors derived the
electron-optical-phonon interaction in heterostructures [8]
and QWs [9], respectively. Chen et al. [10] studied the
interface polarons in heterojunctions consisting of polar
and non-polar crystals under magnetic fields of arbitrary
strength. Gu et al. [11,12] discussed the ground states and
cyclotron resonance of interface magnetopolarons in het-
erojunctions by considering the effect of bulk LO phonons
and a single branch of effective interface optical (IO)
phonons. However, the effect of IO phonons is weakened
since only an image potential, which has been proved to
be neglectable later on, was considered to restrict the elec-
tron near the interface. They ignored a more important re-
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striction effect of energy band bending. Ban et al. [13,14]
pointed out that the single branch approximation of IO
phonons should be improved and a detailed structure of
IO phonons should be considered for heterojunctions. In
an early paper, Hai et al. [15] investigated the cyclotron
resonance of polarons in QWs taking into account the
electron-phonon interaction for all specific phonon modes.

Up to now, there are lots of experimental and theo-
retical works studying the basic properties of bulk ma-
terial and low dimensional semiconductors under pres-
sure [16–20], such as the effect of pressure on crystal con-
stants, dielectric constants and effective electronic masses,
etc. In literatures, Murnaghan equation [21] was com-
monly used to describe crystal constants under pressure.
On the other hand, a variety of static dielectric constant
is determined by the ionizabilities of materials. As usual,
the ionizability of a covalent crystal is less and its static
dielectric constant reduces as pressure increases. Contrar-
ily, the ionizability of an ionic crystal is bigger and its
static dielectric constant increases as pressure increases.
Unfortunately, GaAs is an exception to this rule. The
band masses of electrons and holes under pressure can
be obtained by the relation between band gap and pres-
sure [22]. Sukumar et al. [23] firstly adopted a perturba-
tion method to study the binding energies of excitons in
quantum wells under pressure without electron-phonon in-
teraction. Guo [24] and Zhao et al. [20] also discussed the
pressure effect of the binding energies by considering this
interaction. The result indicates that both the phonon ef-
fect and pressure effect are remarkable. However, so far as
we know that there is still a lack of works on cyclotron
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resonance of polarons in such a kind of heterostructures
under pressure.

Under consideration of a realistic interface poten-
tial [25] in this paper, an improved perturbation method
proposed by Larsen et al. [26] is adopted to study po-
larons in semiconductor heterojunctions in magnetic fields
taking into account of the interaction between an elec-
tron and both the bulk LO and the two branches of IO
phonons. The relation of polaronic properties dependent
on the external magnetic fields is obtained by discussing
the transition energies between the ground state and first
excited state of Landau levels for a polaron. The polaron
cyclotron mass (PCM) and pressure effect are studied for
weak, strong and resonant magnetic fields, respectively.
The numerical results for semiconductor heterojunctions
consisting of III–V group show that the contribution from
IO phonons with higher frequency can not be neglected
in weak field limit, although the bulk LO phonons are
more important to influence the PCM. As increase of a
magnetic field, the contribution from the two branches of
IO phonons tends to be comparable with that from the
bulk LO phonons. It becomes more and more important
that the contribution to the PCM from the two branches
of IO phonons as the magnetic field increases under pres-
sure of 40 kbar. At the same time, both of the contribu-
tions from bulk LO and IO phonons are important. The
properties of the contributions to the PCM from different
branches of phonons varying with strong magnetic fields
and their pressure effect are the same and negative with
that for weak magnetic fields. The pressure effect of LO
and IO phonons on the PCM are important when the cy-
clotron resonance happens near the frequencies of differ-
ent branches of phonons. The detailed IO phonon modes
should be considered in the future work especially when
ones study the pressure effects of cyclotron resonance of
polarons.

2 Hamiltonian and perturbation calculation

Let us suppose a heterojunction (GaAs/AlAs) consisting
of two semi-infinite polar semiconductors labeled 1 and 2,
respectively, with an electron moving inside 1 near the in-
terface (x−y plane). A static uniform magnetic field with
a symmetrical gauge transformation B = (0, 0, BM ) is ap-
plied perpendicular to the interface (z direction). The sys-
tem of the electron, LO and IO phonons can be described
by the following Hamiltonian

H = H⊥ + H||, (1a)

where,

H⊥ =
P 2

z

2m
+ Vr(z), (1b)

H|| = H0 + He−p. (1c)

Here, the first term of equation (1b) is the kinetic energy
of electron in the z direction and the second term is the
heterojunction potential [25]. The Hamiltonian without

electron-phonon interaction in equation (1c) is [10,26]

H0 = (Px − β̃2y/4)2/2m + (Px + β̃2x/4)2/2m

+
∑

k

�ωLOa+
k ak +

∑

q,ξ

�ωIOξb
+
q,ξbq,ξ. (1d)

In the above equation, �P = (Px, Py, Pz) is the electronic
momentum, β̃2 = 2eBM/c (cis velocity of light), ωLO and
ωIOξ are the frequencies of bulk LO phonons and the ξ’th
(ξ = ±) branch of IO phonons. a+

k (ak) is the creation
(annihilation) operator of bulk LO phonons with wave vec-
tor �k = (�k||, kz) and b+

q,ξ(bq,ξ) the corresponding operators
of the ξ’th branch of IO phonons with two-dimension wave
vector �q. Here, the effective mass of an electron is chosen
as that in material 1 to simplify the calculation since the
probability of the electron penetrating into material 2 is
small [25].

The Hamiltonian of interaction between an electron
and LO, IO phonons in equation (1c) is written as [25]

He−p = He−LO + He−IO, (1e)

where

He−LO =
∑

k

[V ∗
k sin(zkz) exp(−i�ρ · �k||)a+

k + H.C.], (1f)

and

He−IO =
∑

q,ξ

[C∗
q,ξe

−qz exp(−i�ρ · �q)b+
q,ξ + H.C.]. (1g)

Here �r = (�ρ, z) is the electronic position vector. In (1f),

V ∗
k =

i

k

[
4πe2

εV
�ωLO

]1/2

, (2a)

and

C∗
q,ξ = i

[
πe2

qε∗S
�ωIOξ

]1/2

, (2b)

in which, V is the volume of material 1 and S is the area
of the interface. In addition,

1
ε

=
1

ε∞1
− 1

ε01
, (2c)

and
1
ε∗

=
2

ε∞1 + ε∞2
− 2

ε01 + ε02
, (2d)

where, ε0i(ε∞i, i = 1, 2) is the static (high) frequency di-
electric constant of material i.

The ξ’th branch of IO phonons modes with frequency
ωIOξ can be obtained by

ω2
IO± =

b ±√
b2 − 4ac

2a
, (2e)

with

a = ε∞1 + ε∞2,

b = ε∞1(ω2
L1 + ω2

T2) + ε∞2(ω2
L2 + ω2

T1),

c = ε∞1ω
2
L1ω

2
T2 + ε∞2ω

2
L2ω

2
T1,
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where ωTi and ωLi are the frequencies of transverse optical
and bulk LO phonons, respectively.

We introduce one-dimensional harmonic oscillator op-
erators [10,26]

A =
1√
�β̃

[(
Px − β̃2 y

4

)
− i
(
Py + β̃2 x

4

)]
, (3a)

and

B = A+ − i
β̃

2
√

�
(x + iy), (3b)

which satisfy the following commutation relations

[A, A+] = [B, B+] = 1, [A, B] = [A, B+] = 0. (3c)

Inserting (3a) into (1d), one obtains

H0 =
�β̃2

2m
(AA+ +1/2)+

∑

k

�ωLOa+
k al +

∑

qξ

�ωIOξb
+
qξbqξ,

(4a)
He−LO =

∑

k

(V ∗
k LkMka+

k + H.c.), (4b)

and
He−IO =

∑

qξ

(C∗
q,ξLqMqb

+
q + H.c.), (4c)

where

Lk = exp

[√
�

β̃
(kx + iky)A −

√
�

β̃
(kx − iky)A+

]
, (4d)

Mk = exp

[√
�

β̃
(kx − iky)B −

√
�

β̃
(kx + iky)B+

]
, (4e)

Lq = exp

[√
�

β̃
(qx + iqy)A −

√
�

β̃
(qx − iqy)A+

]
, (4f)

and

Mq = exp

[√
�

β̃
(qx − iqy)B −

√
�

β̃
(qx + iqy)B+

]
. (4g)

A quasi-adiabatic approximation [10] is adopted here to
seek for the expected value of H , which depends on param-
eter “z”. Then the expected value is added as an adiabatic
potential to H⊥ so as to obtain the effective Hamiltonian.
H0 can be treated as an unperturbed Hamiltonian and
He−p as a perturbed one in calculation of H||. It should
be pointed out that the quasi-adiabatic approximation is
valid only in the case when the characteristic extent for
the motion of a polaron along the z direction is much large
than the magnetic length. This corresponds the magnetic
field is not very weak for a given interface potential. The
unperturbed eigenstates are denoted by

|n〉A |M〉B |Nk〉 |Nq〉 ≡ |n, M, Nk, Nq〉 . (5)

At zero-temperature limit, the energy of unperturbed
ground state is

E(0)
n = 〈n, M, 0, 0|H0 |n, M, 0, 0〉 =

(
n +

1
2

)
�ωc, (6a)

and the energy correction in the second order is

∆E(2)
n (z) =

∑

k

|V ∗
k |2 [sin(zkz)]2

×
∑

n′

∣∣
A

〈
n′ ∣∣L−1

k

∣∣n
〉

A

∣∣2

E
(0)
n − E

(0)
n′ − �ωLO

+
∑

qξ

∣∣C∗
qξ

∣∣2 exp(−2qz)

×
∑

n′

∣∣∣A
〈
n′ ∣∣L−1

q

∣∣n
〉

A

∣∣∣
2

E
(0)
n − E

(0)
n′ − �ωIOξ

. (6b)

Then, one obtains the effective Hamiltonian to the second
order for the state with Landau quantum number n:

Hn,eff (z) = H⊥ +
(

n +
1
2

)
�ωc + ∆E(2)

n (z). (7)

The following trial function in the z direction can be cho-
sen for the ground state:

ζ(z) =
{

ζA(z) = Bb1/2(bz + β)e−bz/2 for z > 0
ζB(z) = B′b′1/2eb′z/2 for z < 0

, (8)

in which, β = 2b/(b′ + b), B = [β(1 + b/b′) + 2β + 2]−1/2

and B′ = Bβ(b/b′)1/2. Here b and b′ are variational
parameters [19].

The realistic heterojunction potential in equation (1b)
can be obtained by using the above function as

Vr(z) = Vd(z) + Vs(z) + V0θ(−z),

and its average value is

Vr = 〈Vr(z)〉 = 〈Vd(z)〉 + 〈Vs(z)〉 + 〈V0θ(−z)〉, (9)

where Vd is the depletion charge contribution, Vs is the
electron contribution to the potential and V0 is the poten-
tial barrier height. θ(z) is a step function. In equation (9),

〈Vd(z)〉 = 4πe2Nd{−B′2/b′ε02 + B2[(6 + 4β + β2)/bε01]},
〈Vs(z)〉 = 4πe2Ns[B′2(1 − B′2/2)b′ε02

+ B4(33 + 50β + 34β2 + 12β3 + 2β4)/4bε01],

and 〈V0θ(−z)〉 = V0B
′2,

where Ns is the areal electron density and Nd is the donor
concentration.

At last, the energy of Landau levels with quantum
number n can be given by

En(b, b′) =
〈
ς(z)

∣∣Hn,eff

∣∣ς(z)
〉
, (10a)

for which b and b′ can be determined by

∂En

∂b
= 0,

∂En

∂b′
= 0. (10b)
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E0 =
1

2
�ωc +

�
2b2

2m

[
1

4
− (β + 1)B2

]
+ Vr −

√
π�ωLO

2
αLλL

∞∫

0

e−t

(1 − e−λ2
L

t)1/2
dt + B2b

(√
�

β

)
�ωLOαLλL

∞∫

0

∞∫

0

e−t

[
1

(1 + u)3

+
1

(1 + u)2
+

β2

2(1 + u)

]
exp

[
−�

2

β2

(
b

2

)2

u2
(
1 − e−λ2

Lt
)]

dudt − B′2b′β2

(√
�

β

)
�ωLOαLλL

∞∫

0

∞∫

0

e−t

2(1 + u)
exp

[−�
2

β2

×
(

b

2

)2

u2(1 − e−λ2
Lt)

]
dudt + B2b

(√
�

β

)
�ωIOξαIξλIξ

∞∫

0

∞∫

0

e−t

[
1

(1 + u)3
+

1

(1 + u)2
+

β2

2(1 + u)

]
exp

[
−�

2

β2

(
b

2

)2

×u2
(
1 − e−λ2

Iξt
)]

dudt − B′2b′β′2
(√

�

β

)
�ωIOξαIξλIξ

∞∫

0

∞∫

0

e−t

2(1 + u)
exp

[
−�

2

β2

(
b

2

)2

u2
(
1 − e−λ2

Iξt
)]

dudt (11)

E1 =
1

2
�ωc + �

2 b2

2m

[
1

4
− (β + 1)B2

]
+ Vr −√

π
hωLO

4
αLλL

∞∫

0

e−(1−λ2
Lt)(1 + e−λ2

Lt)

(1 − e−λ2
L

t)1/2
dt

+ B2b

(√
�

β

)
�ωLOαLλL

∞∫

0

∞∫

0

e−(1−λ2
Lt)

[
1

(1 + u)3
+

1

(1 + u)2
+

β2

2(1 + u)

]
exp

[
−�

β2

(
b

2

)2

u2
(
1 − e−λ2

Lt
)]

×
[
e−λ2

Lt + (1 − e−λ2
Lt)2

�

β2

(
b

2

)2

u2

]
dudt − B′2b′β2

(√
�

β

)
�ωLOαLλL

∞∫

0

∞∫

0

e−(1−λ2
Lt)

2(1 + u)
exp

[
−�

β2

(
b

2

)2

u2(1 − e−λ2
Lt)

]

×
[
e−λ2

Lt +
(
1 − e−λ2

Lt
)2 �

β2

(
b

2

)2

u2

]
dudt + B2b

(√
�

β

)
�ωIOξαIξλIξ

∞∫

0

∞∫

0

e−(1−λ2
Iξt)

[
1

(1 + u)3
+

1

(1 + u)2
+

β2

2(1 + u)

]

× exp

[
−�

β2

(
b

2

)2

u2
(
1 − e−λ2

Iξt
)] [

e−λ2
Iξt + (1 − e−λ2

Iξt)2
�

β2

(
b

2

)2

u2

]
dudt − B′2b′β2

(√
�

β

)
�ωIOξαIξλIξ

×
∞∫

0

∞∫

0

e−(1−λ2
Iξt)

2(1 + u)
exp

[
−�

β2

(
b

2

)2

u2(1 − e−λ2
Iξt)

] [
e−λ2

Iξt + (1 − e−λ2
Iξt)2

�

β2

(
b

2

)2

u2

]
dudt. (15)

3 Cyclotron resonance

The cyclotron frequency is defined by ωc = β̃2

2m for a free
electron in magnetic fields and the cyclotron frequency
ω∗

c for a polaron in magnetic fields can be determined by
the difference of energies between the first state and the
ground excited state, i.e. E1 − E0 = �ω∗

c . The PCM m∗
can be determined by ω∗

c = eBM/m∗c.
If one defines

λ2
L =

ωc

ωLO
, λ2

Iξ =
ωc

ωIOξ
,

then the ground-state energy for a polaron can be obtained
from (6) by taking n = 0:

see equation (11) above

where

αL =
e2

2�2

(
2m

�ωLO

)1/2 1
ε
, (12)

and

αIξ =
e2

2�2

(
2m

�ωIOξ

)1/2 1
ε∗

(13)

are the coupling constants of interaction between the elec-
tron, bulk-LO and IO phonons, respectively. The following
subsections are given to discuss ω∗

c for different intensities
of magnetic fields.

3.1 Weak magnetic field (ωc < ωLO, ωIO)

In the case of ωc < ωLO, ωIO, the denominator in
equation (6b) is obviously negative for every non-negative
n′, i.e.

E
(0)
1 − E

(0)
n′ − �ωLO = (1 − n′)�ωc − �ωLO < 0, (14a)

and

E
(0)
1 − E

(0)
n′ − �ωIOξ = (1 − n′)�ωc − �ωIOξ < 0, (14b)

with n′ = 1, 2, 3, ...
Then, the energy of the first excited state for a polaron

can be obtained from equation (6) by taking n = 1 and is
given by

see equation (15) above
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Then the cyclotron frequency ω∗
c can be obtained. Mean-

while, ω∗
c and the PCM m∗ satisfy m∗/m = ωc/ω∗

c . As
discussed in Section 2, the quasi-adiabatic approximation
is invalid for weak field limit corresponding to λ2

L, λ2
Iξ � 1

so that equation (15) does not given correct result. On the
other hand, the harmonic oscillator description for the mo-
tion of an electron in the x − y plane is incorrect.

3.2 Strong magnetic field (ωc � ωLO, ωIO)

For this case, the denominators in equation (6b) can be
rewritten as

E
(0)
1 − E

(0)
n′ − �ωLO = �ωLO[(1 − n′)λ2

L − 1], (16)

and

E
(0)
1 − E

(0)
n′ − �ωIOξ = �ωIOξ[(1 − n′)λ2

Iξ − 1]. (17)

Since λ2
L, λ2

Iξ � 1 in the process of summing up n′, one
obtains

E1 =
3
2

�ωc + �
2 b2

2m

[
1
4
− (β + 1)B2

]

+ Vr − 3
8
√

π�ωLOαLλL

+ B2b

(√
�

β

)
�(ωLOαLλL + ωIOξαIξλIξ)

[
1

(1 + u)3

+
1

(1 + u)2
+

β2

2(1 + u)

] ∞∫

0

(1 − �b2u2/β2)2

exp
[

�

β2 b2u2
] du

− B′2b′β2

(√
�

β

)
�(ωLOαLλL

+ ωIOξαIξλIξ)

∞∫

0

du

2(1 + u)
(1 − �b2u2/β2)2

exp
[

�

β2 b2u2
] . (18)

3.3 Resonant magnetic fields

Replacing E
(0)
1 −E

(0)
n′ by E1 −En′ in (6b), one can easily

obtain the polaron energy for the first excited Landau
level. The following three situations should be discussed
for the interaction between an electron and phonons:

(i) When the frequency of magnetic field satisfies
|(ωc − ωIO−)/(ωc − ωIO+)| � 1 and ωc

∼= ωIO−, the

two-fold splitting of PCM also happens. One obtains

E1 =
1
2

�ωc + �
2 b2

2m

[
1
4
− (β + 1)B2

]
+ Vr

+
�

2/3

β3

(
b

2

)3 (�ωIO−)2αI−λI−
E1 − E0 − �ωIO−

×
⎡

⎣B2b

∞∫

0

u2

[
1

(1 + u)3
+

1
(1 + u)2

+
β2

2(1 + u)

]
exp

[
− �

β2

(
b

2

)2

u2

]
du

−B′2b′β2

∞∫

0

u2

2(1 + u)
exp

[
− �

β2

(
b

2

)2

u2

]
du

⎤

⎦ ,

(19)

where E0 is given by equation (11). A two-fold splitting
of polaron cyclotron frequency can be obtained from
the two solutions E1,± of the above equation:

ω∗
c,± = (E1,± − E0)/�. (20)

The corresponding PCM m∗± reads

m∗
±

m
=

�ωc

E1,± − E0
. (21)

(ii) When the frequency of magnetic field satisfies
|(ωc − ωIO+)/(ωc − ωIO−)| � 1 and ωc

∼= ωIO+, the
two-fold splitting of PCM also happens. Equation (18)
can be rewritten as

E1 =
1
2

�ωc + �
2 b2

2m

[
1
4
− (β + 1)B2

]
+ Vr

+
�

2/3

β3

(
b

2

)3 (�ωIO+)2αI+λI+

E1 − E0 − �ωIO+

×
⎡

⎣B2b

∞∫

0

u2

[
1

(1 + u)3
+

1
(1 + u)2

+
β2

2(1 + u)

]

× exp

[
− �

β2

(
b

2

)2

u2

]
du

−B′2b′β2

∞∫

0

u2

2(1 + u)
exp

[
− �

β2

(
b

2

)2

u2

]
du

⎤

⎦ ,

(22)

and equations (20) and (21) are also available.
(iii) When the frequency of magnetic field satisfies

|(ωc − ωLO)/(ωc − ωIOξ)| � 1 and ωc
∼= ωLO, the

coupling between the electron and a bulk LO phonon
causes another two-fold splitting for the PCM. For
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this case,

E1 =
1
2

�ωc + �
2 b2

2m

[
1
4
− (β + 1)B2

]
+ Vr

+
(�ωLO)2αLλL

E1 − E0 − �ωLO

[
√

π/4

− �
3/2

β̃3

(
b

2

)3
∞∫

0

[
1

(1 + u)3
+

1
(1 + u)2

+
β2

2(1 + u)

]
u2 exp

[
− �

β2

(
b

2

)2

u2

]
du

− B′2b′β2

∞∫

0

u2

2(1 + u)
exp

[
− �

β2

(
b

2

)2

u2

]
du

]
,

(23)

where E0 can be obtained by equation (11). One can
find the cyclotron frequency from the two solutions
EL

1,± of the above equation:

ω∗
c,± = (EL

1,± − E0)/�. (24)

4 Pressure effect

The relation between pressure and crystal constant of bulk
material can be obtained by Murnaghan equation [21]

a(P ) = a(0)
(

1 + P
B′

B

)−1/3B′

, (25)

where B is the bulk elastomeric modulus, and satisfies
B′ = dB/dP . Under low-pressure condition, equation (25)
can be simplified as

a(P ) = a(0)(1 − P/3B). (26)

The relation of high-frequency dielectric constant varying
with pressure [27,28] can be obtained from the dependence
of band gap on pressure, i.e.

ε∞ = 1 + DAω2
p/Ē2

g , (27)

with
Ē2

g = E2
h + C2. (28)

Here, ωp is the frequency of a valence electron and de-
pends on volume as ωp ∼ V 1/2. Ēg is the average optical
gap (or Penn gap), which can be divided as a homopolar
(covalent) contribution Ēh and an ionic contribution C.
Factor A is a constant (A ∼= 1) and D = Neff /4 indicates
the probability of occupied d states transition between
the interbands. It is generally assumed that dC/dP ∼= 0.
The volume dependence of Eh and D is estimated to be
Eh ∼ V 0.83 and D − 1 ∼ V 4.3. The derivative of ε∞ to
volume can be written in terms of the Phillps-Van Veceten
ionicity fi = C2/E2

g :

∂ ln ε∞
∂ ln V

∼= 5(ε∞ − 1)
3ε∞

(0.9 − fi). (29)

Table 1. Parameters for III–V group semiconductors GaAs
and AlAs.

Materials ε0 ε∞ m αB ELO ETO

AlAs 10.06 8.16 0.109 0.1260 50.09 45.11
GaAs 12.83 10.90 0.0655 0.0681 36.70 33.83

Table 2. Calculated parameters for GaAs/AlAs
heterojunction.

Materials αIO EIO αIO+ EIO+ αIO− EIO−
GaAs/AlAs 0.0862 37.07 0.0469 47.56 0.0308 35.17

The pressure dependence of volume can be written as
∂P/∂V = −B/V . One can obtain the dielectric constant
as following form:

ε∞(P ) = 1 + [ε∞(0) − 1]e−
5

3B (0.9−fi)P . (30)

In order to obtain the effects of the electron-phonon inter-
action coupling constant dependent on hydrostatic pres-
sure for heterojunction structures, one needs to know the
dependence of the bulk optical phonons on pressure. The
Grüneisen-mode parameters under low pressure should be
introduced as [29]

γj = −∂ ln ωj

∂ ln V

∣∣∣∣
V =V0

= B
∂ωj

∂P

∣∣∣∣
P=0

, (31)

where j = LO, TO labels the LO- and TO-phonons, re-
spectively. Since γj is nearly a constant at low pressure
for the two kinds of phonons, the modification of phonon
energy due to pressure can be expressed as

�ωj(P ) = �ωj(0)e
γj
B P , (32)

In equation (32), parameter 0 denotes the condition with-
out pressure effect (P = 0). Equation (32) shows that the
phonon frequency increases as pressure. This conclusion
agrees with the calculation of the self-consistent density-
functional perturbation theory [29].

At low pressure, one can fit the band gap Eg(p) to a
quadratic function

Eg(P ) = Eg(0) + bP + cP 2. (33)

The pressure dependence of electron band mass can be
expressed as

m0

m∗(P )
= 1 +

A

Eg(P )
. (34)

5 Numerical results and discussion

The relative parameters used in calculation for semicon-
ductor heterojunctions of the III–V group GaAs/AlAs
are listed in Tables 1 and 2 and the results are shown
by Figures 1–5.

For convenience, we choose λ2 (λ2
I+/λ2

I− =
ωIO−/ωIO+, λ2

L/λ2
I = ωIO/ωLO) to denote the strength of
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Fig. 1. Contributions to polaron cyclotron mass from different
branches of phonons and their values under pressure (40 kbar )
in weak magnetic fields. The dashed, dot and dot dashed lines
correspond to the contributions from IO-phonons with lower
frequency ωIO− , higher frequency ωIO+ and LO-phonons with
frequency ωLO, respectively. The solid, square dot solid and
dot solid lines correspond to their contributions under pressure
(40 kbar).

Fig. 2. Contributions to polaron cyclotron mass from different
branches of phonons and their values under pressure (40 kbar )
in strong magnetic fields. The dashed, dot and dot dashed lines
correspond to the contributions from IO-phonons with lower
frequency ωIO− , higher frequency ωIO+ and LO-phonons with
frequency ωLO, respectively. The solid, square dot solid and
dot solid lines correspond to their contributions under pressure
(40 kbar).

magnetic fields. It should be pointed out that the abscissa
λ2 without pressure effect was adopted in Figures 1–5 so
as to measure the magnetic strength with an equal-weight
because it changes with pressure.

Figure 1 shows that the contribution from each branch
of phonons to the PCM in weak magnetic fields and their
pressure effects (40 kbar). One can see from the contri-
butions of different phonons that the bulk LO phonons
are most, while the IO phonons are lest important. The
contribution from each branch of phonons increases non-
linearly with magnetic strength and the magnetic effect of
bulk LO phonons is strongest. Here, we do not show the
result for very small λ2 since equation (15) is incorrect as
discussed in Section 3.1.

Fig. 3. he splitting of polaron cyclotron mass and its pres-
sure effect (40 kbar) around ωIO− . The solid and dashed lines
correspond to with and without pressure, respectively.

At zero pressure, the contribution from bulk LO
phonons plays a main role at the limit of weak mag-
netic field. Meanwhile, the contribution from IO phonons
with lower frequency can be neglected and that from IO
phonons with higher frequency can not be neglected. As
increase of the strength of magnetic fields, the contribu-
tions from both branches of IO phonons also increase,
but that from IO phonons with lower frequency increases
much faster and can not be neglected. The contributions
from bulk LO and IO phonons are both important and
that from LO and IO phonons are comparable. The phys-
ical reason is that the electron tunnels into well far from
the interface so as to couple with bulk LO phonons more
strongly because of the confinement of interface potential
and band bending to the electron in a realistic heterojunc-
tion. The electron moves on the quantized orbits (Landau
levels) in the x−y plane due to the static magnetic field in
the z direction. On the one hand, the cyclotron frequency
ωc of an electron increases with magnetic fields, accord-
ingly the confinement to the electron becomes stronger
and the electronic wave functions are localized more ob-
viously. On the other hand, the average electronic num-
ber on each Landau level increases whereas the number of
Landau levels filled by electrons decreases as the magnetic
field increases and the electronic wave function is confined
within a narrower region. Both of the above localizations
lead to strengthening of the coupling between the electron
and IO phonons. These conclusions are more general than
that given in reference [14] because a realistic heterojunc-
tion potential is taken into account here.

Under pressure, the contribution from each branch of
phonons is similar to that at zero pressure. The contri-
butions from the two branches of IO phonons increase
with magnetic fields faster than that from LO phonons,
the increase of that from IO phonons with higher fre-
quency is fastest, and that from bulk LO phonons slowest.
At this moment, the contributions from bulk LO and IO
phonons are both important, the contributions from the
two branches of IO phonons tend to be stronger than that
at zero pressure. It can be easily understood from equa-
tions (33) and (9) that the pressure effect enhances the
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Fig. 4. The splitting of polaron cyclotron mass and its pres-
sure effect (40 kbar) around ωIO+ . The solid and dashed lines
correspond to with and without pressure, respectively.

confinement of the electron as well as broadens the band
gap Eg and enhances the band bending. As a result, the
electron moves in the well nearer the interface and cou-
ples more strongly with IO phonons. On the other hand,
equations (34) and (32) indicate respectively that the elec-
tronic band mass increases with Eg and the frequencies of
phonons increase with pressure. The collaborating effect
together with the influence of pressure on the dielectric
constant strengthens the interaction between an electron
and different kinds of phonons.

Figure 2 gives the contributions to the PCM from dif-
ferent branches of phonons in strong magnetic fields and
their pressure effects (40 kbar). The properties of the con-
tributions as magnetic fields increasing are the same but
negative with that as decreasing of weak magnetic fields.

Figures 3 and 4 describe the two-fold splitting of PCM
due to IO phonons with lower frequency (ωc

∼= ωIO−,
λ2

I− ∼= 1) and higher frequency (ωc
∼= ωIO+, λ2

I+
∼= 1),

respectively. It is obvious that the two-fold splitting in-
creases linearly with magnetic fields for both branches of
phonons with lower and higher frequencies. Since the split-
ting width increases with the coupling between the elec-
tron and phonons, and the pressure effect leads to the
strengthening of the coupling, the splitting width of the
PCM increases with pressure effects due to the contribu-
tions from the two branches of IO phonons, in which that
from the branch of phonons with higher frequency is much
obvious. The position of the PCM after splitting is deter-
mined mainly by the electron-phonon coupling constant
(increases with electron mass and phonon frequency), and
phonon frequency. Pressure makes both of them increase.
Then, the contributions from two branches of IO phonons
broaden the splitting of the PCM, and the splitting caused
by the branch with higher frequency is more obvious. It
should be pointed out that in Figure 3 the two-fold split-
ting caused by the branch with lower frequency locates at
two sides of that without pressure effects, which needs to
be discussed further about its physical property.

Figure 5 gives the two-fold splitting of the PCM
(ωc

∼= ωLO, λ2
LO

∼= 1) due to the contribution of bulk LO
phonons. It can be seen that the splitting increases non-
linearly with magnetic fields. This is similar to the results

Fig. 5. The splitting of polaron cyclotron mass and its pres-
sure effect (40 kbar) around ωLO. The solid and dashed lines
correspond to with and without pressure, respectively.

derived in a previous paper [11]. It is obvious that the
splitting width is narrower than that from IO phonons.
However, the pressure effect is important although the
contribution of bulk LO phonons due to pressure effect
is less than that of IO phonons.

6 Conclusion

In conclusions, the cyclotron resonance of polarons in re-
alistic heterojunctions and its pressure effect are discussed
by considering the influences of LO and two branches of
IO phonons. The numerical computation for semiconduc-
tor heterojunctions of the III–V group GaAs/AlAs indi-
cates that the contribution to the polaron resonant mass
from the branch of IO phonons with higher frequency can
not be neglected at weak magnetic fields although that
from LO phonons is more important. As the increase of
the magnetic fields, the contributions from LO and two
branches of IO phonons are comparable. The contribu-
tions from two branches of IO phonons become more and
more obviously as the increase of magnetic fields under
pressure, and both LO and IO phonons are important.
In strong magnetic fields, the contributions from differ-
ent branches of phonons varying with magnetic fields and
pressure are similar but negative with that in weak fields.
The pressure effect of cyclotron resonance appearing near
the frequencies of different branches of phonons is obvious.

The work was supported by the National Natural Science Foun-
dation of P.R. China (Project 60566002) and project for excel-
lent subject-directors of Inner Mongolia Autonomous Region.

References

1. R. Fuchs, K.L. Kliewer, Phys. Rev. 140, A2076 (1965)
2. H. Ibach, Phys. Rev. Lett. 24, 1416 (1970); 27, 253 (1971)
3. E. Evans, D.L. Mills, Phys. Rev. B 8, 4004 (1973)
4. X.X. Liang, S.W. Gu, Solid State Commun. 50, 505 (1984)
5. S. Das Sarma, Phys. Rev. Lett. 52, 859 (1984)



X.L. Yu and S.L. Ban: Cyclotron resonance of a polaron in a realistic heterojunction and its pressure effect 491

6. F.M. Peeters, Xiaoguang Wu, J.T. Devreese, Phys. Rev.
B 34, 1160 (1986)

7. D.M. Larsen, Phys. Rev. B 33, 799 (1986)
8. N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989)
9. G.Q. Hai, F.M. Peeters, J.T. Devreese, Phys. Rev. B 48,

4666 (1993)
10. C.Y. Chen, D.L. Lin, T.Z. Ding, Phys. Rev. B 36, 9816

(1987)
11. C.W. Wei, X.J. Kong, S.W. Gu, Phys. Rev. B 38, 8390

(1988)
12. Ze Hu, Y.T. Wang, S.W. Gu et al., Solid State Commun.

81, 325 (1992); J. Phys. CM 4, 5087 (1992)
13. S.L. Ban, X.X. Liang, R.S. Zheng, Phys. Lett. A 192, 110

(1994)
14. S.L. Ban, X.X. Liang, R.S. Zheng, Phys. Rev. B 51, 2351

(1995)
15. G.Q. Hai, F.M. Peeters, J.T. Devreese, Phys. Rev. B 47,

10358 (1993)
16. P. Lefebvre, B. Gil, H. Mathieu, Phys. Rev. B 35, 5630

(1987)
17. A.R. Goni, A. Cantarero, K. Syassen et al., Phys. Rev. B

41, 10111 (1990)

18. B. Sukumar, K. Navaneethakrishnan, Solid State
Commun. 76, 561 (1990)

19. S.L. Ban, X.X. Liang, J. Lumines. 94, 417 (2001)
20. G.J. Zhao, X.X. Liang, S.L. Ban, Phys. Lett. A 319, 191

(2001)
21. J.A. Tuchman, S. Kim, Z.F. Sui et al., Phys. Rev. B 46,

13371 (1992)
22. R.K. Willardson, E.R. Webber, High pressure in semicon-

ductor physics I (Academic Press, New York, 1998)
23. B. Sukumar, K. Navaneethakrishnan, Solid State

Commun. 76, 561 (1990)
24. Z.Z. Guo, X.X. Liang, S.L. Ban, Mod. Phys. Lett. B 17,

1425 (2003)
25. S.L. Ban, J.E. Hasbun, Eur. Phys. J. B 8, 453 (1999)
26. D.M. Larsen, Phys. Rev. B 30, 4595 (1984)
27. D.R. Penn, Phys. Rev. 128, 2093 (1962)
28. J.A. Van Vechten, Phys. Rev. 182, 891 (1969)
29. Z.W. Yan, S.L. Ban, X.X. Liang, Eur. Phys. J. B 35, 41

(2003)


